\begin{tabbing} $\forall$$A$, ${\it A'}$:Type. \\[0ex]strong{-}subtype($A$;${\it A'}$) \\[0ex]$\Rightarrow$ \=($\forall$$B$:($A$$\rightarrow$Type), $C$:(${\it A'}$$\rightarrow$Type), ${\it eq}$:EqDecider($A$), ${\it eq'}$:EqDecider(${\it A'}$), $f$, $g$:$a$:$A$ fp$\rightarrow$ $B$($a$).\+ \\[0ex]($\forall$$a$:$A$. $B$($a$) $\subseteq$r $C$($a$)) $\Rightarrow$ $f$ $\subseteq$ $g$ $\Rightarrow$ $f$ $\subseteq$ $g$) \- \end{tabbing}